Add like
Add dislike
Add to saved papers

Combined Falling Drop/Open Port Sampling Interface System for Automated Flow Injection Mass Spectrometry.

Analytical Chemistry 2017 November 8
The aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7-15 μL range with an injected sample volume of several hundred nanoliters. Sample drop height, positioning of the internal capillary on the sampling end of the probe, and carrier solvent flow rate were optimized for maximum signal. Sample throughput, signal reproducibility, matrix effects, and quantitative analysis capability of the system were established using the drug molecule propranolol and its isotope labeled internal standard in water, unprocessed river water and two commercially available buffer matrices. A sample-to-sample throughput of ∼45 s with a ∼4.5 s base-to-base flow injection peak profile was obtained in these experiments. In addition, quantitation with minimally processed rat plasma samples was demonstrated with three different statin drugs (atorvastatin, rosuvastatin, and fluvastatin). Direct characterization capability of unprocessed samples was demonstrated by the analysis of neat vegetable oils. Employing the autosampler system for spatially resolved liquid extraction surface sampling exemplified by the analysis of propranolol and its hydroxypropranolol glucuronide phase II metabolites from a rat thin tissue section was also illustrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app