JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss.

We report a novel small molecule acceptor (SMA) named FTTB-PDI4 obtained via ring-fusion between the thiophene and perylene diimide (PDI) units of a PDI-tetramer with a tetrathienylbezene (TTB) core. A small voltage loss of 0.53 V and a high power conversion efficiency of 10.58% were achieved, which is the highest value reported for PDI-based devices to date. By comparing the fused and nonfused SMAs, we show that the ring-fusion introduces several beneficial effects on the properties and performances of the acceptor material, including more favorable energy levels, enhanced light absorption and stronger intermolecular packing. Interestingly, morphology data reveal that the fused molecule yields higher domain purity and thus can better maintain its molecular packing and electron mobility in the blend. Theoretical calculations also demonstrate that FTTB-PDI4 exhibits a "double-decker" geometry with two pairs of mostly parallel PDI units, which is distinctively different from reported PDI-tetramers with highly twisted geometries and can explain the better performance of the material. This work highlights the promising design of PDI-based acceptors by the ring-fusion strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app