Add like
Add dislike
Add to saved papers

How Well Can the M06 Suite of Functionals Describe the Electron Densities of Ne, Ne 6+ , and Ne 8+ ?

The development of better approximations to the exact exchange-correlation functional is essential to the accuracy of density functionals. A recent study suggested that functionals with few parameters provide more accurate electron densities than recently developed many-parameter functionals for light closed-shell atomic systems. In this study, we calculated electron densities, their gradients, and Laplacians of Ne, Ne6+ , and Ne8+ using 19 electronic structure methods, and we compared them to the CCSD reference results. Two basis sets, namely, aug-cc-pωCV5Z and aug-cc-pV5Z, are utilized in the calculations. We found that the choice of basis set has a significant impact on the errors and rankings of some of the selected methods. The errors of electron densities, their gradients, and Laplacians calculated with the aug-cc-pV5Z basis set are substantially reduced, especially for Minnesota density functionals, as compared to the results using the aug-cc-pωCV5Z basis set (a larger basis set utilized in earlier work (Medvedev et al. Science 2017, 355, 49-52)). The rankings of the M06 suite of functionals among the 19 methods are greatly improved with the aug-cc-pV5Z basis set. In addition, the performances of the HSE06, BMK, MN12-L, and MN12-SX functionals are also improved with the aug-cc-pV5Z basis set. The M06 suite of functionals is capable of providing accurate electron densities, gradients, and Laplacians using the aug-cc-pV5Z basis set, and thus it is suitable for a wide range of applications in chemistry and physics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app