Add like
Add dislike
Add to saved papers

Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

Analytical Chemistry 2017 December 6
In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl- , SO4 2- , and Br- ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl- . The selectivity sequence found for both systems was Cl- > SO4 2- > Br- . The high selectivity of Cl- anions can be attributed to the higher binding constant of Cl- with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl- was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl- anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl- anions was demonstrated using the artificial matrix mimicking human serum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app