Add like
Add dislike
Add to saved papers

A novel perovskite solar cell design using aligned TiO 2 nano-bundles grown on a sputtered Ti layer and a benzothiadiazole-based, dopant-free hole-transporting material.

Nanoscale 2017 November 17
This work highlights the utilization of a novel hole-transporting material (HTM) derived from benzothiadiazole: 4-(3,5-bis(trifluoromethyl)phenyl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (CF-BTz-ThR) and aligned TiO2 nano-bundles (TiO2 NBs) as the electron transporting layer (ETL) for perovskite solar cells (PSCs). The aligned TiO2 NBs were grown on titanium (Ti)-coated FTO substrates using a facile hydrothermal method. The newly designed CF-BTz-ThR molecule with suitable highest occupied molecular orbital (HOMO) favored the effective hole injection from perovskite deposited aligned TiO2 NBs thin film. The PSCs demonstrated a power conversion efficiency (PCE) of ∼15.4% with a short circuit current density (Jsc ) of ∼22.42 mA cm-2 and an open circuit voltage (Voc ) of ∼1.02 V. The efficiency data show the importance of proper molecular engineering whilst highlighting the advantages of dopant-free HTMs in PSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app