Add like
Add dislike
Add to saved papers

Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis.

Cellular Immunology 2018 January
Angiogenesis is an organized series of events, beginning with vessel destabilization, followed by endothelial cell re-organization, and ending with vessel maturation. The formation of a mature vascular network requires precise spatial and temporal regulation of a large number of angiogenic factors, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor (PDGF). VEGF aids in vascular permeability and endothelial cell recruitment, FGF-2 activates endothelial cell proliferation and migration while PDGF stimulates vascular stability. Accordingly, VEGF may inhibit vessel stabilization while PDGF may inhibit endothelial cell recruitment. Therefore, a new polymeric system was prepared by the supercritical carbon dioxide foaming technology, which realized sequential delivery of two or more growth factors with the controlled dose and rate. Increased release of VEGF (71.10%) and FGF-2 (69.76%) compared to PDGF (43.17%) was observed for the first 7 days. Thereafter, up till 21 days, an increased rate of release of BMP-2 compared to VEGF 165 was observed. The effects of PDGF-PLAms/VEGF-FGF-2-PLGA scaffolds on angiogenesis were investigated by human umbilical vein endothelial cells (HUVECs) angiogenic differentiation in vitro and chorioallantoic membrane (CAM) angiogenesis in vivo. Sequential delivery of VEGF, FGF-2 and PDGF from structural polymer scaffolds with distinct kinetics resulted in significant angiogenic differentiation of HUVECs and rapid formation of mature vascular networks in chorioallantoic membrane. This study reported a composite scaffold with distinct release kinetics, and these results clearly indicated the importance of sequential delivery of multiple growth factors in tissue regeneration and engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app