JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Molecular Hybrid for Mitochondria-Targeted NO Photodelivery.

ChemMedChem 2018 January 9
The design, synthesis, spectroscopic and photochemical properties, and biological evaluation of a novel molecular hybrid that is able to deliver nitric oxide (NO) into mitochondria are reported. This molecular conjugate unites a tailored o-CF3 -p-nitroaniline chromophore, for photo-regulated NO release, and a rhodamine moiety, for mitochondria targeting, in the same molecular skeleton via an alkyl spacer. A combination of steady-state and time-resolved spectroscopic and photochemical experiments demonstrate that the two chromogenic units preserve their individual photophysical and photochemical properties in the conjugate quite well. Irradiation with violet light triggers NO release from the nitroaniline moiety and photoionization in the rhodamine center, which also retains considerable fluorescence efficiency. The molecular hybrid preferentially accumulates in the mitochondria of A549 lung adenocarcinoma cells where it induces toxicity at a concentration of 1 μm, exclusively upon irradiation. Comparative experiments, carried out with ad-hoc-synthesized model compounds, suggest that the phototoxicity observed at such a low concentration is probably not due to NO itself, but rather to the formation of the highly reactive peroxynitrite that is generated from the reaction of NO with the superoxide anion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app