JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential.

Smooth muscle voltage-gated potassium (Kv) channels are important regulators of microvascular tone and tissue perfusion. Recent studies indicate that Kv1 channels represent a key component of the physiological coupling between coronary blood flow and myocardial oxygen demand. While the mechanisms by which metabolic changes in the heart are transduced to alter coronary Kv1 channel gating and promote vasodilation are unclear, a growing body of evidence underscores a pivotal role of Kv1 channels in sensing the cellular redox status. Here, we discuss current knowledge of mechanisms of Kv channel redox regulation with respect to pyridine nucleotide modulation of Kv1 function via ancillary Kvβ proteins as well as direct modulation of channel activity via reactive oxygen and nitrogen species. We identify areas of additional research to address the integration of regulatory processes under altered physiological and pathophysiological conditions that may reveal insights into novel treatment strategies for conditions in which the matching of coronary blood supply and myocardial oxygen demand is compromised.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app