JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

let-7 miRNA controls CED-7 homotypic adhesion and EFF-1-mediated axonal self-fusion to restore touch sensation following injury.

Neuronal injury often leads to devastating consequences such as loss of senses or locomotion. Restoration of function after injury relies on whether the injured axons can find their target cells. Although fusion between injured proximal axon and distal fragment has been observed in many organisms, its functional significance is not clear. Here, using Caenorhabditis elegans mechanosensory neurons, we address this question. Using two femtosecond lasers simultaneously, we could scan and sever posterior lateral microtubule neurons [posterior lateral microtubules (PLMs)] on both sides of the worm. We showed that axotomy of both PLMs leads to a dramatic loss of posterior touch sensation. During the regenerative phase, only axons that fuse to their distal counterparts contribute to functional recovery. Loss of let-7 miRNA promotes functional restoration in both larval and adult stages. In the L4 stage, loss of let-7 increases fusion events by increasing the mRNA level of one of the cell-recognition molecules, CED-7. The ability to establish cytoplasmic continuity between the proximal and distal ends declines with age. Loss of let-7 overcomes this barrier by promoting axonal transport and enrichment of the EFF-1 fusogen at the growing tip of cut processes. Our data reveal the functional property of a regenerating neuron.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app