Add like
Add dislike
Add to saved papers

Deficiency of the Thyroid Hormone Transporter Monocarboxylate Transporter 8 in Neural Progenitors Impairs Cellular Processes Crucial for Early Corticogenesis.

Journal of Neuroscience 2017 November 30
Thyroid hormones (THs) are essential for establishing layered brain structures, a process called corticogenesis, by acting on transcriptional activity of numerous genes. In humans, deficiency of the monocarboxylate transporter 8 (MCT8), involved in cellular uptake of THs before their action, results in severe neurological abnormalities, known as the Allan-Herndon-Dudley syndrome. While the brain lesions predominantly originate prenatally, it remains unclear how and when exactly MCT8 dysfunction affects cellular processes crucial for corticogenesis. We investigated this by inducing in vivo RNAi vector-based knockdown of MCT8 in neural progenitors of the chicken optic tectum, a layered structure that shares many developmental features with the mammalian cerebral cortex. MCT8 knockdown resulted in cellular hypoplasia and a thinner optic tectum. This could be traced back to disrupted cell-cycle kinetics and a premature shift to asymmetric cell divisions impairing progenitor cell pool expansion. Birth-dating experiments confirmed diminished neurogenesis in the MCT8-deficient cell population as well as aberrant migration of both early-born and late-born neuroblasts, which could be linked to reduced reelin signaling and disorganized radial glial cell fibers. Impaired neurogenesis resulted in a reduced number of glutamatergic and GABAergic neurons, but the latter additionally showed decreased differentiation. Moreover, an accompanying reduction in untransfected GABAergic neurons suggests hampered intercellular communication. These results indicate that MCT8-dependent TH uptake in the neural progenitors is essential for early events in corticogenesis, and help to understand the origin of the problems in cortical development and function in Allan-Herndon-Dudley syndrome patients. SIGNIFICANCE STATEMENT Thyroid hormones (THs) are essential to establish the stereotypical layered structure of the human forebrain during embryonic development. Before their action on gene expression, THs require cellular uptake, a process facilitated by the TH transporter monocarboxylate transporter 8 (MCT8). We investigated how and when dysfunctional MCT8 can induce brain lesions associated with the Allan-Herndon-Dudley syndrome, characterized by psychomotor retardation. We used the layered chicken optic tectum to model cortical development, and induced MCT8 deficiency in neural progenitors. Impaired cell proliferation, migration, and differentiation resulted in an underdeveloped optic tectum and a severe reduction in nerve cells. Our data underline the need for MCT8-dependent TH uptake in neural progenitors and stress the importance of local TH action in early development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app