Add like
Add dislike
Add to saved papers

Ubiquitin-Binding Protein CG5445 Suppresses Aggregation and Cytotoxicity of Amyotrophic Lateral Sclerosis-Linked TDP-43 in Drosophila.

Ubiquitin-mediated protein degradation plays essential roles in proteostasis and is involved in the pathogenesis of neurodegenerative diseases in which ubiquitin-positive aberrant proteins accumulate. However, how such aberrant proteins are processed inside cells has not been fully explored. Here, we show that the product of CG5445 , a previously uncharacterized Drosophila gene, prevents the accumulation of aggregate-prone ubiquitinated proteins. We found that ubiquitin conjugates were associated with CG5445, the knockdown of which caused the accumulation of detergent-insoluble ubiquitinated proteins. Furthermore, CG5445 rescued eye degeneration caused by the amyotrophic lateral sclerosis (ALS)-linked mutant TAR DNA-binding protein of 43 kDa (TDP-43), which often forms ubiquitin-positive aggregates in cells through the capacity of CG5445 to bind to ubiquitin chains. Biochemically, CG5445 inhibited the accumulation of insoluble forms and promoted their clearance. Our results demonstrate a new possible mechanism by which cells maintain ubiquitinated aggregation-prone proteins in a soluble form to decrease their cytotoxicity until they are degraded.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app