Add like
Add dislike
Add to saved papers

Automated time-lapse microscopy a novel method for screening of antibiotic combination effects against multidrug-resistant Gram-negative bacteria.

OBJECTIVES: Antibiotic combinations are often used for carbapenemase-producing Enterobacteriaceae (CPE) but more data are needed on the optimal selection of drugs. This study aimed to evaluate the feasibility of a novel automated method based on time-lapse microscopy (the oCelloScope, Philips BioCell A/S, Allerød, Denmark) to determine in vitro combination effects against CPE and to discuss advantages and limitations of the oCelloScope in relation to standard methods.

METHODS: Four Klebsiella pneumoniae and two Escherichia coli were exposed to colistin, meropenem, rifampin and tigecycline, alone and in combination. In the oCelloScope experiments, a background corrected absorption (BCA) value of ≤8 at 24 h was used as a primary cut-off indicating inhibition of bacterial growth. A new approach was used to determine synergy, indifference and antagonism based on the number of objects (bacteria) in the images. Static time-kill experiments were performed for comparison.

RESULTS: The time-kill experiments showed synergy with 12 of 36 regimens, most frequently with colistin plus rifampin. BCA values ≤8 consistently correlated with 24-h bacterial concentrations ≤6 log10 CFU/mL. The classification of combination effects agreed with the time-kill results for 33 of 36 regimens. In three cases, the interactions could not be classified with the microscopy method because of low object counts.

CONCLUSIONS: Automated time-lapse microscopy can accurately determine the effects of antibiotic combinations. The novel method is highly efficient compared with time-kill experiments, more informative than checkerboards and can be useful to accelerate the screening for combinations active against multidrug-resistant Gram-negative bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app