Add like
Add dislike
Add to saved papers

High-energy collision-induced dissociation of histidine ions [His + H] + and [His - H] - and histidine dimer [His 2 + H] .

RATIONALE: Histidine (His) is an essential amino acid, whose side group consists of an aromatic imidazole moiety that can bind a proton or metal cation and act as a donor in intermolecular interactions in many biological processes. While the dissociation of His monomer ions is well known, information on the kinetic energy released in the dissociation is missing.

METHODS: Using a new home-built electrospray ionization (ESI) source adapted to a double-focusing mass spectrometer of BE geometry, we investigated the fragmentation reactions of protonated and deprotonated His, [His + H]+ and [His - H]- , and the protonated His dimer [His2  + H]+ , accelerated to 6 keV in a high-energy collision with helium gas. We evaluated the kinetic energy release (KER) for the observed dissociation channels.

RESULTS: ESI of His solution in positive mode led to the formation of His clusters [Hisn + H]+ , n = 1-6, with notably enhanced stability of the tetramer. [His + H]+ dissociates predominantly by loss of (H2 O + CO) with a KER of 278 meV, while the dominant dissociation channel of [His - H]- involves loss of NH3 with a high KER of 769 meV. Dissociation of [His2 + H]+ is dominated by loss of the monomer but smaller losses are also observed.

CONCLUSIONS: The KER for HCOOH loss from both [His + H]+ and [His - H]- is similar at 278 and 249 meV, respectively, which suggests that the collision-induced dissociation takes place via a similar mechanism. The loss of COOH and C2 H5 NO2 from the dimer suggests that the dimer of His binds through a shared proton between the imidazole moieties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app