Add like
Add dislike
Add to saved papers

Embedding graphs in Lorentzian spacetime.

Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs (DAG) into Minkowski spacetime using Multidimensional scaling (MDS). First we generalise the classical MDS algorithm, defined only for metrics with a Riemannian signature, to manifolds of any metric signature. We then use this general method to develop an algorithm which exploits the causal structure of a DAG to assign space and time coordinates in a Minkowski spacetime to each vertex. As in the causal set approach to quantum gravity, causal connections in the discrete graph correspond to timelike separation in the continuous spacetime. The method is demonstrated by calculating embeddings for simple models of causal sets and random DAGs, as well as real citation networks. We find that the citation networks we test yield significantly more accurate embeddings that random DAGs of the same size. Finally we suggest a number of applications in citation analysis such as paper recommendation, identifying missing citations and fitting citation models to data using this geometric approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app