Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Involvement of SNARE protein Ykt6 in glycosome biogenesis in Trypanosoma brucei.

The kinetoplastid parasites Trypanosoma and Leishmania are etiologic agents of diseases like African sleeping sickness, Chagas and leishmaniasis that inflict many tropical and subtropical parts of the world. These parasites are distinctive in that they compartmentalize most of the usually cytosolic enzymes of the glycolytic pathway within a peroxisome-like organelle called the glycosome. Functional glycosomes are essential in both the procyclic and bloodstream forms of trypanosomatid parasites, and mislocalization of glycosomal enzymes to the cytosol is fatal for the parasite. The life cycle of these parasites is intimately linked to their efficient protein and vesicular trafficking machinery that helps them in immune evasion, host-pathogen interaction and organelle biogenesis and integrity. Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins play important roles in vesicular trafficking and mediate a wide range of protein-protein interactions in eukaryotes. We show here that the SNARE protein Ykt6 is necessary for glycosome biogenesis and function in Trypanosoma brucei. RNAi-mediated depletion of Ykt6 in both the procyclic and bloodstream forms of T. brucei leads to mislocalization of glycosomal matrix proteins to the cytosol, pronounced reduction in glycosome number, and cell death. GFP-tagged Ykt6 appears as punctate structures in the T. brucei cell and colocalizes in part to glycosomes. Our results constitute the first demonstration of a role for SNARE proteins in the biogenesis of peroxisomal organelles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app