JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Boundary Formation through a Direct Threshold-Based Readout of Mobile Small RNA Gradients.

Developmental Cell 2017 November 7
Small RNAs have emerged as a new class of mobile signals. Here, we investigate their mechanism of action and show that mobile small RNAs generate sharply defined domains of target gene expression through an intrinsic and direct threshold-based readout of their mobility gradients. This readout is highly sensitive to small RNA levels at the source, allowing plasticity in the positioning of a target gene expression boundary. Besides patterning their immediate targets, the readouts of opposing small RNA gradients enable specification of robust, uniformly positioned developmental boundaries. These patterning properties of small RNAs are reminiscent of those of animal morphogens. However, their mode of action and the intrinsic nature of their gradients distinguish mobile small RNAs from classical morphogens and present a unique direct mechanism through which to relay positional information. Mobile small RNAs and their targets thus emerge as highly portable, evolutionarily tractable regulatory modules through which to create pattern.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app