Add like
Add dislike
Add to saved papers

African trypanosomiasis: Synthesis & SAR enabling novel drug discovery of ubiquinol mimics for trypanosome alternative oxidase.

African trypanosomiasis is a parasitic disease affecting 5000 humans and millions of livestock animals in sub-Saharan Africa every year. Current treatments are limited, difficult to administer and often toxic causing long term injury or death in many patients. Trypanosome alternative oxidase is a parasite specific enzyme whose inhibition by the natural product ascofuranone (AF) has been shown to be curative in murine models. Until now synthetic methods to AF analogues have been limited, this has restricted both understanding of the key structural features required for binding and also how this chemotype could be developed to an effective therapeutic agent. The development of 3 amenable novel synthetic routes to ascofuranone-like compounds is described. The SAR generated around the AF chemotype is reported with correlation to the inhibition of T. b. brucei growth and corresponding selectivity in cytotoxic assessment in mammalian HepG2 cell lines. These methods allow access to greater synthetic diversification and have enabled the synthesis of compounds that have and will continue to facilitate further optimisation of the AF chemotype into a drug-like lead.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app