Add like
Add dislike
Add to saved papers

Can imaging kinetic parameters of dynamic contrast-enhanced magnetic resonance imaging be valuable in predicting clinicopathological prognostic factors of invasive breast cancer?

Background Intrinsic molecular profiling of breast cancer provides clinically relevant information that helps tailor therapy directed to the specific tumor subtype. We hypothesized that dynamic contrast-enhanced MRI (DCE-MRI) derived quantitative kinetic parameters (CD-QKPs) may help predict molecular tumor profiles non-invasively. Purpose To determine the association between DCE-MRI (CD-QKPs) and breast cancer clinicopathological prognostic factors. Material and Methods Clinicopathological factors in consecutive women with biopsy-confirmed invasive breast cancer who underwent breast DCE-MRI were retrospectively reviewed. Analysis of variance was used to examine associations between prognostic factors and CD-QKPs. Fisher's exact test was used to investigate the relationship between kinetic curve type and prognostic factors. Results A total of 198 women with invasive breast cancer were included. High-grade and HER2+ tumors were more likely to have a washout type curve while luminal A tumors were less likely. High-grade was significantly associated with increased peak enhancement (PE; P = 0.01), enhancement maximum slope (MS; P = 0.03), and mean enhancement ( ME, P = 0.03), while high clinical lymph node stage (cN3) was significantly associated with increased MS and time to peak (tP; P = 0.01). HER2+ tumors were associated with a higher PE ( P = 0.03) and ME ( P = 0.06) than HER2- counterparts, and ER-/HER2+ tumors showed higher PE and ME values than ER+/HER2- tumors ( P = 0.06). Conclusion DCE-MRI time-intensity CD-QKPs are associated with high tumor grade, advanced nodal stage, and HER2+ status, indicating their utility as imaging biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app