Add like
Add dislike
Add to saved papers

Hydrogen-assisted Carbon Dioxide Thermochemical Reduction on La 0.9 Ca 0.1 FeO 3-δ Membranes: A Kinetics Study.

ChemSusChem 2018 January 24
Kinetics data for CO2 thermochemical reduction in an isothermal membrane reactor is required to identify the rate-limiting steps. A detailed reaction kinetics study on this process supported by an La0.9 Ca0.1 FeO3-δ (LCF-91) membrane is thus reported. The dependence of CO2 reduction rate on various operating conditions is examined, such as CO2 concentration on the feed side, fuel concentrations on the sweep side, and temperatures. The CO2 reduction rate is proportional to the oxygen flux across the membrane, and the measured maximum fluxes are 0.191 and 0.164 μmol cm-2  s-1 with 9.5 mol% H2 and 11.6 mol% CO on the sweep side at 990 °C, respectively. Fuel is used to maintain the chemical potential gradient across the membrane and CO is used to derive the surface reaction kinetics. This membrane also exhibits stable performances for 106 h. A resistance-network model is developed to describe the oxygen transport process and the kinetics data are parameterized using the experimental values. The model shows a transition of the rate limiting step between the surface reactions on the feed side and the sweep side depending on the operating conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app