Add like
Add dislike
Add to saved papers

Inhibition of transient potential receptor vanilloid type 1 suppresses seizure susceptibility in the genetically epilepsy-prone rat.

AIMS: Intracellular calcium plays an important role in neuronal hyperexcitability that leads to seizures. One calcium influx route of interest is the transient receptor potential vanilloid type 1 (TRPV1) channel. Here, we evaluated the effects of capsazepine (CPZ), a potent blocker of TRPV1 channels on acoustically evoked seizures (audiogenic seizures, AGS) in the genetically epilepsy-prone rat (GEPR-3), a model of inherited epilepsy.

METHODS: Male and female GEPR-3s were used. For the acute CPZ treatment study, GEPR-3s were tested for AGS susceptibility before and after treatment with various doses of CPZ (0, 1, 3, and 10 mg/kg; ip). For semichronic CPZ treatment study, GEPR-3s were tested for AGS susceptibility before and after 5-day CPZ treatment at the dose of 1 mg/kg (ip). The prevalence, latency, and severity of AGS were recorded and analyzed.

RESULTS: We found that acute CPZ pretreatment reduced the seizure severity in male GEPR-3s; the effect was dose-dependent. In female GEPR-3s, however, CPZ treatment completely suppressed the seizure susceptibility. Furthermore, semichronic CPZ treatment suppressed seizure susceptibility in female GEPR-3s, but only reduced the seizure severity in male GEPR-3s.

CONCLUSIONS: These findings suggest that the TRPV1 channel is a promising molecular target for seizure suppression, with female GEPR-3s exhibiting higher sensitivity than male GEPR-3s.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app