JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prenatal cocaine exposure disrupts the dopaminergic system and its postnatal responses to cocaine.

Impaired attention is the hallmark consequence of prenatal cocaine exposure (PCE), affecting brain development, learning, memory and social adaptation starting at an early age. To date, little is known about the brain structures and neurochemical processes involved in this effect. Through focusing on the visual system and employing zebrafish as a model, we show that PCE reduces expression of dopamine receptor Drd1, with levels reduced in the optic tectum and other brain regions, but not the telencephalon. Organism-wide, PCE results in a 1.7-fold reduction in the expression of the dopamine transporter (dat), at baseline. Acute cocaine administration leads to a 2-fold reduction in dat in drug-naive larvae but not PCE fish. PCE sensitizes animals to an anxiogenic-like behavioral effect of acute cocaine, bottom-dwelling, while loss of DAT due to genetic knockout (DATKO) leads to bottom-dwelling behavior at baseline. Neuronal calcium responses to visual stimuli in both PCE and DATKO fish show tolerance to acute cocaine in the principal regions of visual attention, the telencephalon and optic tectum. The zebrafish model can provide a sensitive assay by which to elucidate the molecular mechanisms and brain region-specific consequences of PCE, and facilitate the search for effective therapeutic solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app