Add like
Add dislike
Add to saved papers

Electronic and Structural Dynamics During the Switching of the Photomagnetic Complex [Fe(L 222 N 5 )(CN) 2 ].

The [Fe(L222 N5 )(CN)2 ] compound, where L222 N5 refers to the macrocyclic Schiff-base ligand, 2,13-dimethyl-3,6,9,-12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,- 16-pentaene, is a photomagnetic FeII based coordination compound, which undergoes light-induced excited spin-state trapping (LIESST). The low spin state is hexacoordinated and the high spin state heptacoordinated. This system also serves as complex for the design of trinuclear or one-dimensional compounds made of other types of bricks with diverse coordinated metals. Here its ultrafast spin-state photoswitching dynamics are studied, by combining femtosecond optical spectroscopy and femtosecond X-ray absorption measurements at the XPP station of the X-ray free-electron laser LCLS. DFT and TD-DFT calculations are used to interpret experimental findings. These studies, performed in the solution phase, show that LIESST in [Fe(L222 N5 )(CN)2 ] occurs on the 100 fs timescale under different types of photoexcitation. In addition, coherent oscillations were observed, resulting from the structural dynamics accompanying LIESST, which were recently evidenced in more conventional octahedral FeII N6 systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app