Add like
Add dislike
Add to saved papers

Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor.

Biological removal of chromate [Cr(VI)] in the presence or absence of nitrate by granular sludge biofilms was investigated in batch experiments and in a sequencing batch reactor (SBR). Denitrifying granular sludge cultivated from activated sludge was able to directly reduce Cr(VI) in the presence of an electron donor. Bioreduction was dependent on the initial Cr(VI) and the granular sludge concentrations. Bioreduction of Cr(VI) was followed by Cr(III) precipitation or entrapment in the granular sludge which was corroborated with decrease in total soluble Cr and increase in inorganic content of biomass. Batch experiments revealed that Cr(VI) addition has no major influence on high-strength nitrate (3000 mg L-1 ) denitrification, but nitrite denitrification was slowed-down. However, SBR experiment demonstrated successful denitrification as well as Cr(VI) removal due to enrichment of Cr(VI)-tolerant denitrifying bacteria. In fact, stable SBR performance in terms of complete and sustained removal of 0.05, 0.1, 0.2, 0.3, 0.5 and 0.75 mM Cr(VI) and denitrification of 3000 mg L-1 was observed during 2 months of operation. Active biomass and electron donor-dependent Cr(VI) removal, detection of Cr(III) in the biomass and recovery of ~ 92% of the Cr from the granular sludge biofilms confirms bioreduction followed by precipitation or entrapment of Cr(III) as the principal chromate removal mechanism. Metagenomic bacterial community analysis showed enrichment of Halomonas sp. in denitrifying granular sludge performing either denitrification or simultaneous reduction of nitrate and chromate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app