Add like
Add dislike
Add to saved papers

Towards Total Energy Shaping Control of Lower-Limb Exoskeletons.

Current robotic exoskeletons enforce fixed reference joint patterns during gait rehabilitation. These control methods aim to replicate normative joint kinematics but do not facilitate learning patient-specific kinematics. Trajectory-free control methods for exoskeletons are required to promote user control over joint kinematics. Our prior work on potential energy shaping provides virtual body-weight support through a trajectory-free control law, but altering only the gravitational forces does not assist the subject in accelerating/decelerating the body forward. Kinetic energy is velocity dependent and thus shaping the kinetic energy in addition to potential energy can yield greater dynamical changes in closed loop. In this paper, we generalize our previous work to achieve underactuated total energy shaping of the human body through a lower-limb exoskeleton. By shaping the fully-actuated part of the body's mass matrix, we satisfy the matching condition for different contact phases and obtain trajectory-free control laws. Simulations of a human-like biped demonstrate speed regulation in addition to body-weight support, indicating the potential clinical value of this control approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app