Add like
Add dislike
Add to saved papers

Static and dynamic magnetic properties of sputtered Fe-Ga thin films.

We present measurements of the static and dynamic properties of polycrystalline iron-gallium films, ranging from 20 nm to 80 nm and sputtered from an Fe0.8 Ga0.2 target. Using a broadband ferromagnetic resonance setup in a wide frequency range, perpendicular standing spin-wave resonances were observed with the external static magnetic field applied in-plane. The field corresponding to the strongest resonance peak at each frequency is used to determine the effective magnetization, the g -factor and the Gilbert damping. Furthermore, the dependence of spin-wave mode on field-position is observed for several frequencies. The analysis of broadband dynamic properties allows determination of the exchange stiffness A = (18 ± 4) pJ/m and Gilbert damping α = 0.042 ± 0.005 for 40 nm and 80 nm thick films. These values are approximately consistent with values seen in epitaxially grown films, indicating the potential for industrial fabrication of magnetostrictive FeGa films for microwave applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app