Add like
Add dislike
Add to saved papers

Multivalent ion-based in situ gelling polysaccharide hydrogel as an injectable bone graft.

Carbohydrate Polymers 2018 January 16
We prepared in situ gelling alginate (ALG)/hyaluronic acid (HA) hydrogels with a controllable gelation rate using CaSO4 as a crosslinking agent and Na2 HPO4 as a crosslinking retardation agent. The ALG/HA hydrogels provided sustained release of bone morphogenetic protein-2 (BMP-2) immobilized in the hydrogels over 5 weeks. The BMP-2-immobilized ALG/HA hydrogels with different ALG/HA ratios were investigated for their in vitro osteogenic differentiation behavior of human bone marrow stem cells (hBMSCs) and in vivo bone regeneration behavior using an animal model (mandibular defect model of miniature pigs). Our findings from cell culture and animal study demonstrated that the osteogenic differentiation of hBMSCs was improved with increasing HA composition in the hydrogel. The hBMSCs/BMP-2-immobilized ALG/HA hydrogel allowed greatly enhanced osteogenic differentiation of hBMSCs (in vitro) and bone regeneration (in vivo) compared with the ALG/HA hydrogel itself and single hBMSCs- or BMP-2-immobilized hydrogel groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app