Add like
Add dislike
Add to saved papers

Direct and potential risk assessment of exposure to volatile organic compounds for primary receptor associated with solvent consumption.

Rapid development of industrial production has stimulated the growth of consumption of raw and auxiliary materials including organic paints, among which volatile organic compounds (VOCs) are proved harmful to the population who inhale the polluted air based on epidemiologic studies. Therefore, new types of environment-friendly paints were developed to replace solvent-based paints (SBPs). Nevertheless, new types of paints containing VOCs failed to replace SBPs entirely due to certain disadvantages. Hence, five kinds of paints were employed in simulation experiments to assess the health risk of primary receptor including three kinds of water-based paints (WBPs) and two kinds of SBPs. Conclusions showed that mean TVOC concentration in breathing zone of primary receptor ranged from 9.5 to 13.6 mg/m3 and 3.4 × 103 to 1.4 × 104  mg/m3 for WBPs and SBPs, respectively. Assessments of non-cancer risk concluded that nearly one third quantified compounds exceeded corresponding thresholds for WBPs, and the maximum risk value was 101.33; for SBPs, the maximum risk value reached 50760.20, and twenty-two compounds exceeded the reference limits. The calculation of cancer risk values showed that seventeen compounds were higher than acceptable limit amongst which 1,2-dibromoethane had maximum values of 1.27 × 10-2 to 3.24 × 10-2 for WBPs; for SBPs, all quantified compounds exceeded the acceptable limit, and 82.61% VOCs were distributed in a scope larger than 1 × 10-3 . Additionally, a removal efficiency of 60% was considered for primary receptor with personal protective equipment, and subsequent results confirmed its inability of lowering the risk resulted from hazardous VOCs. The calculated potential health risk could be applied to estimate the total health risk for both primary and secondary receptor based on consumed materials. The finding suggested that WBPs could improve VOCs exposure condition and reduce the direct and potential health risk significantly for primary receptor, although they might dissatisfy acceptable limit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app