Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway.

Neuroscience 2018 Februrary 11
Although the receptor-interacting protein 1 kinase (RIP1K)-regulated necroptosis can be evoked by cerebral ischemia, the effects of RIP1K in mediating neuronal and astrocytic cell death and the underlying mechanisms remain poorly understood. This study evaluates the contribution of RIP1K to ischemic stroke-induced neuronal and astrocytic cell death, and the activation of autophagic-lysosomal pathway. Using an in vitro oxygen and glucose deprivation (OGD) in primary cultured neurons or astrocytes and a permanent middle cerebral artery occlusion (pMCAO) model in rats or mice, we observed the role of RIP1K in the ischemic neuronal and astrocytic cell death and the underlying mechanisms by pharmacological or genetic inhibition of RIP1K. pMCAO or OGD condition led to an increase in RIP1K, RIP3K and RIP1K-RIP3K complex. RIP1K knockdown or necrostatin-1 (Nec-1, a specific inhibitor of RIP1K) treatment reduced infarct volume, improved neurological deficits, increased microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP) levels, and attenuated neuronal or astrocytic necrotic cell death in the ischemic cortex. RIP1K knockdown decreased RIP1K-RIP3K complex formation, light chain 3 II (LC3II) and active cathepsin B levels and lysosomal membrane permeability (LMP). Furthermore, a combination of Nec-1 and an inhibitor of autophagy or cathepsin B produced an enhancement of protective effect on neuronal or astrocytic cell death. RIP1K-mediated necroptosis may play important roles in ischemia-induced neuronal and astrocytic cell death through the activation of autophagic-lysosomal pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app