Journal Article
Meta-Analysis
Add like
Add dislike
Add to saved papers

Refinement of the equine influenza model in the natural host: A meta-analysis to determine the benefits of individual nebulisation for experimental infection and vaccine evaluation in the face of decreased strain pathogenicity.

Equine Influenza (EI) is an important respiratory disease of horses caused by H3N8 equine influenza viruses (EIV). Vaccination is a key strategy to prevent or control this disease. However, EIV undergoes continuous antigenic drift and whilst numerous EI vaccines are commercially available worldwide, an accurate evaluation of their efficacy is frequently required through clinical trials conducted in the natural host. Room nebulisation is one of the chosen methods to challenge horses during EI vaccine studies. A potential decreased pathogenicity observed with recent Florida Clade 2 (FC2) EIV isolates have increased the heterogeneity of the clinical response and virus shedding measured after infection by room nebulisation, which reduced the statistical power of studies. Our objectives were to compare clinical and virological parameters following experimental infection with several different EIV strains and to confirm that individual nebulisation is a model refinement that prevents an increase of the number of animals per group. This study is a retrospective comparison and meta-analysis of clinical and virological results collected from 9 independent EIV infection studies in the natural host. Naïve Welsh mountain ponies were experimentally infected by room or individual nebulisation with FC2 EIV strains, including A/equine/Richmond/1/07 (R/07), A/equine/East Renfrewshire/11 (ER/11), A/equine/Cambremer/1/2012 (C/12) and A/equine/Northamptonshire/1/13 (N/1/13). The retrospective meta-analysis confirmed a decreased pathogenicity of the EIV ER/11 and C/12 strains when compared with R/07. Experimental infection by individual nebulisation improved the clinical and virological parameters induced by recent FC2 strains, when compared with conventional room nebulisation. In conclusion, individual nebulisation offers a better control of the challenge dose administered and a greater homogeneity of the response measured in control animals. This in turn, helps maintain the number of animals per group to the minimum necessary required to obtain meaningful results in vaccine efficacy studies, which adheres to the 3Rs (Replacement, Reduction and Refinement) principles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app