Add like
Add dislike
Add to saved papers

Single-Molecule Imaging of Proteoglycans in the Pericellular Matrix.

Biophysical Journal 2017 December 6
The pericellular matrix is a robust, hyaluronan-rich polymer brush-like structure that controls access to the cell surface, and plays an important role in cell adhesion, migration, and proliferation. We report the observation of single bottlebrush proteoglycan dynamics in the pericellular matrix of living chondrocytes. Our investigations show that the pericellular matrix undergoes gross extension on the addition of exogenous aggrecan, and that this extension is significantly in excess of that observed in traditional particle exclusion assays. The mean-square displacement of single, bound proteoglycans increases with distance to cell surface, indicating reduced confinement by neighboring hyaluronan-aggrecan complexes. This is consistent with published data from quantitative particle exclusion assays that show openings in the pericellular matrix microstructure ranging from ∼150 nm near the cell surface to ∼400 nm near the cell edge. In addition, the mobility of tethered aggrecan drops significantly when the cell coat is enriched with bottlebrush proteoglycans. Single-molecule imaging in this thick polysaccharide matrix on living cells has significant promise in the drive to elucidate the role of the pericellular coat in human health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app