Add like
Add dislike
Add to saved papers

Structure, antioxidative potency and potential scavenging of OH and OOH of phenylethyl-3,4-dihydroxyhydrocinnamate in protic and aprotic media: DFT study.

DFT methods including B3LYP, B3PW91 and M05-2x associated to 6-31+G(d,p) were used for the structural and antioxidant potency studies of phenylethyl-3,4-dihydroxy-hydrocinnamate (PDH). Solvents were employed according to their protric and aprotic character. So, calculated structures agree with the experimental data. O4 H4 is propitious to scavenge radicals whatever the medium except in water where O3 H3 and O4 H4 are competitive. The explicit solvents of dichloromethane (DCM) and water present a disparity of OH bond dissociation enthalpy and free energy (BDE and BDFE). These parameters are low in continuum except in water. The ionization potentials (IP) and potential affinities (PA) are low in solvents. BDE, IP and PA are each, approximatively constant in mixed solvent treatment in water using n-H2 O (n=3,5,8). Elsewhere, H-atom transfer (HAT) mechanism is favoured in vacuum and DCM, whereas sequential proton loss electron transfer (SPLET) is likely in protic solvents. A discord between HAT and SPLET in benzene is observed. The PDH compound is more antioxidant and resistant to oxidation than caffeic acid phenethyl ester (CAPE). The potential of scavenging of OH and OOH whatever the reaction channel shows that they decay rapidly in any media through HAT. PDH is easily deprotonated in the protic solvents and the resulting product is the most antioxidant and the least resistant to oxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app