CONTROLLED CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Short-term feed and light deprivation reduces voluntary activity but improves swimming performance in rainbow trout Oncorhynchus mykiss.

Rainbow trout Oncorhynchus mykiss (~ 180 g, 16 °C and < 5 kg m-3 ) that were feed deprived and kept in total darkness showed a significant increase in critical swimming speed (U crit ) between 1 and 12 days of deprivation (from 3.35 to 4.46 body length (BL) s-1 ) with no increase in maximum metabolic rate (MMR). They also showed a significant decrease in the estimated metabolic rate at 0 BL s-1 over 12 days which leads to a higher factorial aerobic metabolic scope at day 12 (9.38) compared to day 1 (6.54). Routine metabolic rates were also measured in ~ 90 g rainbow trout that were swimming freely in large circular respirometers at 16 °C. These showed decreasing consumption oxygen rates and reductions in the amount of oxygen consumed above standard metabolic rate (a proxy for spontaneous activity) over 12 days, though this happened significantly faster when they were kept in total darkness when compared to a 12:12-h light-dark (LD) photoperiod. Weight loss during this period was also significantly reduced in total darkness (3.33% compared to 4.98% total body weight over 12 days). Immunological assays did not reveal any consistent up- or downregulation of antipathogenic and antioxidant enzymes in the serum or skin mucus of rainbow trout between 1 and 12 days of feed and light deprivation. Overall, short periods of deprivation do not appear to significantly affect the performance of rainbow trout which appear to employ a behavioural energy-sparing strategy, albeit more so in darkness than under a 12:12-h LD regime.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app