Add like
Add dislike
Add to saved papers

Translational utility of a hierarchical classification strategy in biomolecular data analytics.

Scientific Reports 2017 November 4
Hierarchical classification (HC) stratifies and classifies data from broad classes into more specific classes. Unlike commonly used data classification strategies, this enables the probabilistic prediction of unknown classes at different levels, minimizing the burden of incomplete databases. Despite these advantages, its translational application in biomedical sciences has been limited. We describe and demonstrate the implementation of a HC approach for "omics-driven" classification of 15 bacterial species at various taxonomic levels achieving 90-100% accuracy, and 9 cancer types into morphological types and 35 subtypes with 99% and 76% accuracy, respectively. Unknown bacterial species were probabilistically assigned with 100% accuracy to their respective genus or family using mass spectra (n = 284). Cancer types were predicted by mRNA data (n = 1960) for most subtypes with 95-100% accuracy. This has high relevance in clinical practice where complete datasets are difficult to compile with the continuous evolution of diseases and emergence of new strains, yet prediction of unknown classes, such as bacterial species, at upper hierarchy levels may be sufficient to initiate antimicrobial therapy. The algorithms presented here can be directly translated into clinical-use with any quantitative data, and have broad application potential, from unlabeled sample identification, to hierarchical feature selection, and discovery of new taxonomic variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app