Add like
Add dislike
Add to saved papers

pH recovery from a proton load in rat cardiomyocytes: effects of chronic exercise.

The ability of cardiomyocytes to recover from a proton load was examined in the hearts of exercise-trained and sedentary control rats in CO2 /[Formula: see text]-free media. Acidosis was created by the NH4 Cl prepulse technique, and intracellular pH (pHi ) was determined using fluorescence microscopy on carboxy-SNARF-1 AM-loaded isolated cardiomyocytes. CO2 -independent pHi buffering capacity (βi ) was measured by incrementally reducing the extracellular NH4 Cl concentration in steps of 50% from 20 to 1.25 mM. βi increased as pHi decreased in both exercise-trained and sedentary control groups. However, the magnitude of increase in βi as a function of pHi was found to be significantly ( P < 0.001) greater in the exercise-trained group compared with the sedentary control group. The rate of pHi recovery from an imposed proton load was found to not be different between the exercise-trained and control groups. The Na+ /H+ exchanger-dependent H+ extrusion rate during the recovery from an imposed proton load, however, was found to be significantly greater in the exercise-trained group compared with the control group. By increasing βi and subsequently the Na+ /H+ exchanger-dependent H+ extrusion rate, exercise training may provide cardiomyocytes with the ability to better handle an intracellular excess of H+ generated during hypoxia/ischemic insults and may serve in a cardioprotective role. These data may be predictive of two positive outcomes: 1) increased exercise tolerance by the heart and 2) a protective mechanism that limits the degree of myocardial acidosis and subsequent damage that accompanies ischemia-reperfusion stress. NEW & NOTEWORTHY The enhanced ability to deal with acidosis conferred by exercise training is likely to improve exercise tolerance and outcomes in response to myocardial ischemia-reperfusion injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app