Add like
Add dislike
Add to saved papers

Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications.

In this study, iron oxide magnetic bovine serum albumin core-shell nanoparticles (BSA coated IONPs) with narrow particle size distribution were synthesized under one-pot reaction via the desolvation and chemical co-precipitation method. Functionalized IONPs were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques. Furthermore, vibrating sample magnetometer (VSM) analysis show these nanoparticles (NPs) have an excellent magnetic properties. Cellular toxicity of IONPs was also investigated on HFF2 cell lines. Additionally, a hemolysis test of as prepared core-shell NPs were performed. The presence of albumin as a biomolecule coating on the surface of IONPs showed an improving effect to reduce the cytotoxicity. The properties of the designed NPs propose the BSA coated IONPs as a promising candidate for multifunctional biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app