Add like
Add dislike
Add to saved papers

Effect of pharmacogenetic markers of vitamin D pathway on deferasirox pharmacokinetics in children.

OBJECTIVES: Patients with β-thalassemia major have extremely low vitamin D levels, owing to reduced intestinal absorption, subicteric tint, and/or iron-induced higher pigmentation. We investigated whether some polymorphisms within the VDR, CYP24A1, CYP27B1, and GC genes could play a role in deferasirox pharmacokinetics in a cohort of pediatric patients.

PATIENTS AND METHODS: Eighteen children with β-thalassemia were enrolled. Drug plasma concentrations at the end of dosing interval (Ctrough) and after 0, 2, 4, 6, and 24 h of drug administration were measured by a HPLC-UV method. Allelic discrimination for VDR (TaqI, FokI, BsmI, Cdx2, and ApaI), CYP24A1 (22776, 3999 and 8620), CYP27B1 (2838 and -1260), and GC (1296) single nucleotide polymorphisms was performed by real-time PCR.

RESULTS: CYP24A1 8620 AG/GG group negatively predicted Ctrough in regression analysis (P=0.012). ApaI AA genotype resulted as a negative predictor of Ctrough (P=0.025) and area under the concentration curve (P=0.007); FoKI CC genotype remained as area under the concentration curve positive predictor (P=0.008) and TC/CC group as half-life (t1/2) (P=0.003) and volume of distribution (Vd) (P=0.011) negative one; TaqI TC/CC was retained as a negative predictor of drug maximum concentration (Cmax) (P=0.004). Moreover, GC 1296 TG/GG seemed able to predict lower time to reach drug maximum concentration (Tmax) (P=0.033).

CONCLUSION: Our preliminary experience suggested the potential usefulness of vitamin D pharmacogenetic to better understand deferasirox interindividual variability, also in pediatric patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app