Add like
Add dislike
Add to saved papers

Investigating the minimum scan parameters required to generate free-breathing motion artefact-free fast-helical CT.

OBJECTIVE: A recently proposed "5DCT" protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artefacts, which arise when tissue motion is greater than scan speed.

METHODS: Using a unique set of digital phantoms based on patient data and verified with a motion phantom, this work identifies the minimum scanner parameters required to successfully generate free-breathing artefact-free fast-helical scans. A motion phantom and 5 patients were imaged 25 times under free-breathing conditions in alternating directions with a 64-slice CT scanner employing a low-dose fast-helical protocol. A series of high temporal resolution (0.1 s) 5DCT scan data sets was generated in each case. A simulated CT scanner was used to "image" each free-breathing data set. Various CT scanner detector widths and rotation times were simulated, and verified using the motion phantom results. Motion-induced artefacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices.

RESULTS: Increasing amounts of motion-induced artefacts were observed with increasing rotation times >0.2 s for 16 mm detector configuration.

CONCLUSION: The current generation of 16-slice CT scanners, which are present in the majority of Radiation Oncology departments, are not capable of generating free-breathing sorting artefact-free images required for 5DCT. Advances in knowledge: A recently proposed "5DCT" protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artefacts, which arise when tissue motion is greater than scan speed. The results suggest that the current generation of 16-slice CT scanners, present in the majority of Radiation Oncology departments, are not capable of generating the free-breathing images required for 5DCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app