Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of β-Amyloid Channels with a Drug Candidate wgx-50 Revealed by Molecular Dynamics Simulations.

Destabilization of cellular ionic homeostasis by toxic β-amyloid (Aβ) channels/barrels, which is a pathogenic mechanism for Alzheimer's disease (AD), is inhibited by a novel anti-AD drug candidate wgx-50 significantly in our previous biological experiments. In this work, molecular dynamics simulations are conducted to investigate wgx-50-Aβ channels/barrels interactions, as well as the ion conductance inhibition mechanism. Ion influx from the extracellular side to the central pore, which is found in apo-form simulations, is blocked by wgx-50 ligands that bind to the hydrophobic rings at the entrance of the channels/barrels. The wgx-50 binding results in smaller pore diameter of the channels/barrels; however, the overall morphology of them remains unaffected in accessible simulation time. The wgx-50 binding site in this work is consistent with what we found in our previous simulations of Aβ protofibril. Our work not only investigates the ligand-Aβ channels/barrels interaction mechanism but also provides insights into the rational drug design of Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app