Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

The "Topological Train Ride" of a viral long non-coding RNA.

RNA Biology 2018 January 3
As the notion of small molecule targeting of regulatory viral and cellular RNAs gathers momentum, understanding their structure, and variations thereof, in the appropriate biological context will play a critical role. This is especially true of the ∼1100-nt polyadenylated nuclear (PAN) long non-coding (lnc) RNA of Kaposi's sarcoma herpesvirus (KSHV), whose interaction with viral and cellular proteins is central to lytic infection. Nuclear accumulation of PAN RNA is mediated via a unique triple helical structure at its 3' terminus (within the expression and nuclear retention element, or ENE) which protects it from deadenylation-dependent decay. Additionally, significant levels of PAN RNA have been reported in both the cytoplasm of KSHV-infected cells and in budding virions, leading us to consider which viral and host proteins might associate with, or dissociate from, this lncRNA during its "journey" through the cell. By combining the power of SHAPE-mutational profiling (SHAPE-MaP) with large scale virus culture facilities of the National Cancer Institute, Frederick MD, Sztuba-Solinska et al. have provide the first detailed description of KSHV PAN nucleoprotein complexes in multiple biological contexts, complementing this by mapping sites of recombinant KSHV proteins on an in vitro-synthesized, polyadenylated counterpart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app