Add like
Add dislike
Add to saved papers

A Multiscale Algorithm for Spatiotemporal Modeling of Multivalent Protein-Protein Interaction.

This article introduces a multiscale framework for spatiotemporal modeling of protein-protein interaction. Cellular protein molecules represent multivalent species that contain modular features, such as binding domains and phosphorylation motifs. The binding and transformations of these features occur at a small time and spatial scale. On the other hand, space and time involved in protein diffusion, colocalization, and formation of complexes could be relatively large. Here, we present an agent-based framework integrated with a multiscale Brownian Dynamics (BD) simulation algorithm. The framework employs spatial graphs to describe multivalent molecules and complexes with their site-specific details. By implementing a time-adaptive feature, the BD algorithm enables efficient computation while capturing the site-specific interactions of the diffusing species at the sub-nanometer scale. We demonstrate these capabilities by modeling two multivalent molecules, one representing a ligand and the other a receptor, in a two-dimensional plane (cell membrane). Using the model, we show that the algorithm can accelerate computation by orders of magnitudes in both concentrated and dilute regimes. We also show that the algorithm enables robust model predictions against a wide range of selection of time step sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app