Add like
Add dislike
Add to saved papers

Collisionless Shock Acceleration of High-Flux Quasimonoenergetic Proton Beams Driven by Circularly Polarized Laser Pulses.

Physical Review Letters 2017 October 21
We present experimental studies on ion acceleration using an 800-nm circularly polarized laser pulse with a peak intensity of 6.9×10^{19}  W/cm^{2} interacting with an overdense plasma that is produced by a laser prepulse ionizing an initially ultrathin plastic foil. The proton spectra exhibit spectral peaks at energies up to 9 MeV with energy spreads of 30% and fluxes as high as 3×10^{12}  protons/MeV/sr. Two-dimensional particle-in-cell simulations reveal that collisionless shocks are efficiently launched by circularly polarized lasers in exploded plasmas, resulting in the acceleration of quasimonoenergetic proton beams. Furthermore, this scheme predicts the generation of quasimonoenergetic proton beams with peak energies of approximately 150 MeV using current laser technology, representing a significant step toward applications such as proton therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app