Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Size Stability and H 2 /CO Selectivity for Au Nanoparticles during Electrocatalytic CO 2 Reduction.

In this paper, we show that Au nanoparticles (AuNPs) stabilized with either citrate or by low-generation dendrimers rapidly grow during electrocatalytic reduction of CO2 . For example, citrate-stabilized AuNPs and AuNPs encapsulated within sixth-generation, hydroxyl-terminated, poly(amidoamine) dendrimers (G6-OH DENs) having diameters of ∼2 nm grow substantially in size (to 6-7 nm) and polydispersity during just 15 min of electrolysis at -0.80 V (vs RHE). This degree of instability makes it impossible to correlate the structure of AuNPs determined prior to electrocatalysis to their catalytic function. In contrast to the G6-OH dendrimer, the higher generation G8-OH analogue stabilizes AuNPs under the same conditions that lead to instability of the other two materials. More specifically, G8-OH DENs having an initial size of 1.7 ± 0.3 nm increase to only 2.2 ± 0.5 nm during electrolysis in 0.10 M NaHCO3 at -0.80 V (vs RHE). Even when the electrolysis is carried out at -1.20 V, the higher-generation dendrimer stabilizes encapsulated AuNPs. This is presumably due to the compactness of the periphery of the G8-OH dendrimer. Although the G8-OH dendrimer nearly eliminates AuNP growth, the surface of the AuNP is still accessible for electrocatalytic reactions. The smaller, more stable G8-OH DENs strongly favor formation of H2 over CO. Some previous reports have suggested that AuNPs in the ∼2 nm size range yield primarily CO, but we believe these findings are a consequence of the growth of the AuNPs during catalysis and do not reflect the true function of ∼2 nm AuNPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app