Add like
Add dislike
Add to saved papers

A Target-Triggered DNAzyme Motor Enabling Homogeneous, Amplified Detection of Proteins.

Analytical Chemistry 2017 December 6
We report here the concept of a self-powered, target-triggered DNA motor constructed by engineering a DNAzyme to adapt into binding-induced DNA assembly. An affinity ligand was attached to the DNAzyme motor via a DNA spacer, and a second affinity ligand was conjugated to the gold nanoparticle (AuNP) that was also decorated with hundreds of substrate strands serving as a high-density, three-dimensional track for the DNAzyme motor. Binding of a target molecule to the two ligands induced hybridization between the DNAzyme and its substrate on the AuNP, which are otherwise unable to spontaneously hybridize. The hybridization of DNAzyme with the substrate initiates the cleavage of the substrate and the autonomous movement of the DNAzyme along the AuNP. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of the DNAzyme motor in real time. A simple addition or depletion of the cofactor Mg2+ allows for fine control of the DNAzyme motor. The motor can translate a single binding event into cleavage of hundreds of substrates, enabling amplified detection of proteins at room temperature without the need for separation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app