Add like
Add dislike
Add to saved papers

Defective interaction between p27 and cyclin A-CDK complex in certain human cancer cell lines revealed by split YFP assay in living cells.

Cyclin-cyclin dependent kinase (CDK) complex is negatively regulated by interaction with CDK inhibitors (CKIs). p27 protein is a major CKI in mammals and its down-regulation correlates with malignant transformation. However, some cancer cells express p27 at normal level, suggesting not only quantitative but qualitative control of p27, although little is known about such control. We analyzed the interaction between p27 and cyclin A (CycA)-CDK complex in living human cell lines, using a split yellow fluorescent protein (YFP) system in which the YFP fluorescence solely depends on p27-CycA binding. Introduction of this system into various cancer cell lines revealed that certain cell lines show no detectable YFP fluorescence. Furthermore, these cell lines exhibited reduced p27-CycA interaction as evaluated by immunoprecipitation, while they showed normal co-localization of both proteins. These results suggest that some cancer cells are defective for efficient interaction between p27 and CycA-CDK complex due to qualitative alteration(s).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app