Add like
Add dislike
Add to saved papers

Pushing the Limits of Piezoresistive Effect by Optomechanical Coupling in 3C-SiC/Si Heterostructure.

This letter reports a giant opto-piezoresistive effect in p-3C-SiC/p-Si heterostructure under visible-light illumination. The p-3C-SiC/p-Si heterostructure has been fabricated by growing a 390 nm p-type 3C-SiC on a p-type Si substrate using the low pressure chemical vapor deposition (LPCVD) technique. The gauge factor of the heterostructure was found to be 28 under a dark condition; however, it significantly increased to about -455 under illumination of 635 nm wavelength at 3.0 mW/cm2 . This gauge factor is over 200 times higher than that of commercial metal strain gauge, 16 times higher than that of 3C-SiC thinfilm, and approximately 5 times larger than that of bulk Si. This enhancement of the gauge factor was attributed to the opto-mechanical coupling effect in p-3C-SiC/p-Si heterostructure. The opto-mechanical coupling effect is the amplified effect of the photoconductivity enhancement and strain-induced band structure modification in the p-type Si substrate. These findings enable extremely high sensitive and robust mechanical sensors, as well as optical sensors at low cost, as no complicated nanofabrication process is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app