JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural characterization of the catalytic γ and regulatory β subunits of phosphorylase kinase in the context of the hexadecameric enzyme complex.

Protein Science 2018 Februrary
In the tightly regulated glycogenolysis cascade, the breakdown of glycogen to glucose-1-phosphate, phosphorylase kinase (PhK) plays a key role in regulating the activity of glycogen phosphorylase. PhK is a 1.3 MDa hexadecamer, with four copies each of four different subunits (α, β, γ and δ), making the study of its structure challenging. Using hydrogen-deuterium exchange, we have analyzed the regulatory β subunit and the catalytic γ subunit in the context of the intact non-activated PhK complex to study the structure of these subunits and identify regions of surface exposure. Our data suggest that within the non-activated complex the γ subunit assumes an activated conformation and are consistent with a previous docking model of the β subunit within the cryoelectron microscopy envelope of PhK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app