JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The IGF1-PI3K-Akt Signaling Pathway in Mediating Exercise-Induced Cardiac Hypertrophy and Protection.

Regular physical activity or exercise training can lead to heart enlargement known as cardiac hypertrophy. Cardiac hypertrophy is broadly defined as an increase in heart mass. In adults, cardiac hypertrophy is often considered a poor prognostic sign because it often progresses to heart failure. Heart enlargement in a setting of cardiac disease is referred to as pathological cardiac hypertrophy and is typically characterized by cell death and depressed cardiac function. By contrast, physiological cardiac hypertrophy, as occurs in response to chronic exercise training (i.e. the 'athlete's heart'), is associated with normal or enhanced cardiac function. The following chapter describes the morphologically distinct types of heart growth, and the key role of the insulin-like growth factor 1 (IGF1) - phosphoinositide 3-kinase (PI3K)-Akt signaling pathway in regulating exercise-induced physiological cardiac hypertrophy and cardiac protection. Finally we summarize therapeutic approaches that target the IGF1-PI3K-Akt signaling pathway which are showing promise in preclinical models of heart disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app