Add like
Add dislike
Add to saved papers

Identification and characterization of key circadian clock genes of tobacco hairy roots: putative regulatory role in xenobiotic metabolism.

The circadian clock is an endogenous system that allows organisms to daily adapt and optimize their physiology and metabolism. We studied the key circadian clock gene (CCG) orthologs in Nicotiana tabacum seedlings and in hairy root cultures (HRC). Putative genes involved in the metabolism of xenobiotic compounds (MXC) were selected and their expression profiles were also analyzed. Seedlings and HRC displayed similar diurnal variations in the expression profiles for the CCG examined under control conditions (CC). MXC-related genes also showed daily fluctuations with specific peaks of expression. However, when HRC were under phenol treatment (PT), the expression patterns of the clock and MXC-related genes were significantly affected. In 2-week-old HRC, PT downregulated the expression of NtLHY, NtTOC1, and NtPRR9 while NtFKF1 and NtGI genes were upregulated by phenol. In 3-week-old HRC, PT also downregulated the expression of all CCG analyzed and NtTOC1 was the most affected. Following PT, the expression of the MXC-related genes was upregulated or displayed an anti-phasic expression profile compared to the expression under CC. Our studies thus provide a glimpse of the circadian expression of clock genes in tobacco and the use of HRC as a convenient system to study plant responses to xenobiotic stresses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app