Add like
Add dislike
Add to saved papers

A one-step method to fabricate novel three-dimensional GaP nanopore arrays for enhanced photoelectrochemical hydrogen production.

Gallium phosphide nanopore arrays with unique three-dimensional interior architectures (3D GaP NPs) are fabricated by electrochemical etching in a neutral solution. As the photoanodes for photoelectrochemical (PEC) hydrogen production, the 3D GaP NPs exhibited a larger photocurrent density (5.65 mA cm-2 at 0 V vs. RHE, which is 58.3 and 2.3 times as large as that of the planar wafer and the NPs reported by our group in our previous work respectively) and a lower onset potential (-0.58 V vs. RHE, shifting negatively nearly 300 mV compared with its counterparts in the previous work). Besides the excellent light-trapping characteristics of the nanostructures, electrochemical impedance spectroscopy (EIS) further confirmed that the enhanced PEC performance was ascribed to the more efficient charge separation and transfer, and the increased surface area with the unique 3D NP arrays. Furthermore, the efficient charge separation may be attributed to the passivated surface states by the neutral solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app