Add like
Add dislike
Add to saved papers

Exfoliated WS2-Nafion Composite based Electromechanical Actuators.

Scientific Reports 2017 November 7
The ability to convert electrical energy into mechanical motion is of significant interest in many energy conversion technologies. Here, we demonstrate the first liquid phase exfoliated WS2-Nafion nanocomposite based electro-mechanical actuators. Highly exfoliated layers of WS2 mixed with Nafion solution, solution cast and doped with Li(+) was studied as electromechanical actuators. Resonant Raman spectroscopy, X-ray photo-electron-spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and AC impedance spectroscopy were used to study the structure, photoluminescence, water uptake, mechanical and electromechanical actuation properties of the exfoliated nanocomposites. A 114% increase in elastic modulus (dry condition), 160% increase in proton conductivity, 300% increase in water uptake, cyclic strain amplitudes of ~0.15% for 0.1 Hz excitation frequency, tip displacements greater than nanotube-Nafion and graphene-Nafion actuators and continuous operation for more than 5 hours is observed for TMD-Nafion actuators. The mechanism behind the increase in water uptake is a result of oxygen atoms occupying the vacancies in the hydrophilic exfoliated flakes and subsequently bonding with water, not possible in Nafion composites based on carbon nanotube and graphene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app